Jumat, 23 Juli 2010

Hubungan Efek Rumah Kaca, Pemanasan Global dan Perubahan Iklim

Global warming

Secara umum iklim merupakan hasil interaksi proses-proses fisik dan kimiafisik dimana parameter-parameternya adalah seperti suhu, kelembaban, angin, dan pola curah hujan yang terjadi pada suatu tempat di muka bumi. Iklim merupakan suatu kondisi rata-rata dari cuaca, dan untuk mengetahui kondisi iklim suatu tempat, diperlukan nilai rata-rata parameterparameternya selama kurang lebih 10 sampai 30 tahun. Iklim muncul setelah berlangsung suatu proses fisik dan dinamis yang kompleks yang terjadi di atmosfer bumi. Kompleksitas proses fisik dan dinamis di atmosfer bumi ini berawal dari perputaran planet bumi mengelilingi matahari dan perputaran bumi pada porosnya. Pergerakan planet bumi ini menyebabkan besarnya energi matahari yang diterima oleh bumi tidak merata, sehingga secara alamiah ada usaha pemerataan energi yang berbentuk suatu sistem peredaran udara, selain itu matahari dalam memancarkan energi juga bervariasi atau berfluktuasi dari waktu ke waktu. Perpaduan antara proses-proses tersebut dengan unsur-unsur iklim dan faktor pengendali iklim menghantarkan kita pada kenyataan bahwa kondisi cuaca dan iklim bervariasi dalam hal jumlah, intensitas dan distribusinya.

Secara alamiah sinar matahari yang masuk ke bumi, sebagian akan dipantulkan kembali oleh permukaan bumi ke angkasa. Sebagian sinar matahari yang dipantulkan itu akan diserap oleh gas-gas di atmosfer yang menyelimuti bumi –disebut gas rumah kaca, sehingga sinar tersebut terperangkap dalam bumi. Peristiwa ini dikenal dengan efek rumah kaca (ERK) karena peristiwanya sama dengan rumah kaca, dimana panas yang masuk akan terperangkap di dalamnya, tidak dapat menembus ke luar kaca, sehingga dapat menghangatkan seisi rumah kaca tersebut.

Efek Rumah Kaca

Efek Rumah Kaca

Peristiwa alam ini menyebabkan bumi menjadi hangat dan layak ditempati manusia, karena jika tidak ada ERK maka suhu permukaan bumi akan 33 derajat Celcius lebih dingin. Gas Rumah Kaca (GRK) seperti CO2 (Karbon dioksida),CH4(Metan) dan N2O (Nitrous Oksida), HFCs (Hydrofluorocarbons), PFCs (Perfluorocarbons) and SF6 (Sulphur hexafluoride) yang berada di atmosfer dihasilkan dari berbagai kegiatan manusia terutama yang berhubungan dengan pembakaran bahan bakar fosil (minyak, gas, dan batubara) seperti pada pembangkitan tenaga listrik, kendaraan bermotor, AC, komputer, memasak. Selain itu GRK juga dihasilkan dari pembakaran dan penggundulan hutan serta aktivitas pertanian dan peternakan. GRK yang dihasilkan dari kegiatan tersebut, seperti karbondioksida, metana, dan nitroksida, menyebabkan meningkatnya konsentrasi GRK di atmosfer.

Berubahnya komposisi GRK di atmosfer, yaitu meningkatnya konsentrasi GRK secara global akibat kegiatan manusia menyebabkan sinar matahari yang dipantulkan kembali oleh permukaan bumi ke angkasa, sebagian besar terperangkap di dalam bumi akibat terhambat oleh GRK tadi. Meningkatnya jumlah emisi GRK di atmosfer pada akhirnya menyebabkan meningkatnya suhu rata-rata permukaan bumi, yang kemudian dikenal dengan Pemanasan Global.

Sinar matahari yang tidak terserap permukaan bumi akan dipantulkan kembali dari permukaan bumi ke angkasa. Setelah dipantulkan kembali berubah menjadi gelombang panjang yang berupa energi panas. Namun sebagian dari energi panas tersebut tidak dapat menembus kembali atau lolos keluar ke angkasa, karena lapisan gas-gas atmosfer sudah terganggu komposisinya. Akibatnya energi panas yang seharusnya lepas keangkasa (stratosfer) menjadi terpancar kembali ke permukaan bumi (troposfer) atau adanya energi panas tambahan kembali lagi ke bumi dalam kurun waktu yang cukup lama, sehingga lebih dari dari kondisi normal, inilah efek rumah kaca berlebihan karena komposisi lapisan gas rumah kaca di atmosfer terganggu, akibatnya memicu naiknya suhu rata-rata dipermukaan bumi maka terjadilah pemanasan global. Karena suhu adalah salah satu parameter dari iklim dengan begitu berpengaruh pada iklim bumi, terjadilah perubahan iklim secara global.

erk2

Pemanasan global dan perubahan iklim menyebabkan terjadinya kenaikan suhu, mencairnya es di kutub, meningkatnya permukaan laut, bergesernya garis pantai, musim kemarau yang berkepanjangan, periode musim hujan yang semakin singkat, namun semakin tinggi intensitasnya, dan anomaly-anomali iklim seperti El Nino – La Nina dan Indian Ocean Dipole (IOD). Hal-hal ini kemudian akan menyebabkan tenggelamnya beberapa pulau dan berkurangnya luas daratan, pengungsian besar-besaran, gagal panen, krisis pangan, banjir, wabah penyakit, dan lain-lainnya

Terbentuknya Minyak Bumi

Minyak bumi atau gas bumi terdapat dalam pori-pori batuan, terutama batuan sediment. Proses pembentukan minyak bumi belum di ketahui secara pasti. Karena itu usaha dan penelitian terus dilakukan orang untuk mengetahui proses terbentuknya minyak secara ilmiah.

Ada tiga macam teori yang menjelaskan proses terbentuknya minyak dan gas bumi. Teori pertama adalah teori “biogenetic” atau lebih di kenal dengan teori “organik”. Yang kedua adalah teori “anorganik”, sedangkan yang ketiga adalah teori “duplex” yang merupakan perpaduan dari kedua teori sebelumnya. Teori duplex yang banyak di terima oleh kalangan luas menjelaskan bahwa minyak dan gas bumi berasal dari berbagai jenis organisme laut baik hewani maupun nabati.

Di perkirakan bahwa minyak bumi berasal dari materi hewani dan gas bumi berasal dari materi nabati. Yang jelas minyak dan gas bumi terdiri dari senyawa kompleks yang unsur utamanya adalah karbon (C) dan unsur hydrogen (H). secara sederhana senyawa ini dapat ditulis dengan rumus kimia CXHY, sehingga sering di sebut sebagai senyawa hidrokarbon.

Pada zaman purba, di darat dan di laut hidup beraneka ragam binatang dan tumbuh-tumbuhan. Binatang serta tumbuh-tumbuhan yang mati ataupun punah itu akhirnya tertimbun di bawah endapan Lumpur. Endapan Lumpur ini kemudian di hanyutkan oleh arus sungai menuju lautan, bersama bahan organik lainnya dari daratan.

Akibat pengaruh waktu, temperatur tinggi dan tekanan beban lapisan batuan di atasnya binatang serta tumbuh-tumbuhan yang mati tadi berubah menjadi bintik-bintik dan gelembung minyak atau gas.

Akibat pengaruh yang sama, maka endapan Lumpur berubah menjadi batuan sediment. Batuan lunak yang berasal dari Lumpur yang mengandung bintik-bintik minyak dikenal sebagai batuan induk atau “soure rock”. Selanjutnya minyak dan gas ini akan bermigrasi menuju tempet yang bertekanan lebih rendah dan akhirnya terakumulasi di tempat yang di sebut perangkap (trap).

Suatu perangkap dapat mengandung:

§ Minyak, gas, dan air

§ Minyak dan air

§ Gas dan air

Karena perbedaan berat jenis, apabila ketiga-tiganya berada dalam suatu perangkap dan berada dalam keadaan stabil, gas senantiasa berada di atas, minyak di tengah dan air di bagian bawah. Gas yang terdapat bersama-sama minyak bumi di sebut “associated gas” sedangkan yang terdapat sendiri dalam suatu perangkap disebut “non-associated gas”.

Dalam proses pembentukan minyak bumi diperlukan waktu yang masih belum bisa di tentukan sehingga mengenai hal ini masih terdapat pendapat yang berbeda-beda. Ada yang mengataka ribuan tahun, ada yang mengatakan jutaan tahun bahkan ada yang mengatakan lebih dari itu.

PENYEBAB PEMANASAN GLOBAL

Dalam laporan terbaru, Fourth Assessment Report, yang dikeluarkan oleh Intergovernmental Panel on Climate Change (IPCC), satu badan PBB yang terdiri dari 1.300 ilmuwan dari seluruh dunia, terungkap bahwa 90% aktivitas manusia selama 250 tahun terakhir inilah yang membuat planet kita semakin panas.2 Sejak Revolusi Industri, tingkat karbon dioksida beranjak naik mulai dari 280 ppm menjadi 379 ppm dalam 150 tahun terakhir. Tidak main-main, peningkatan konsentrasi CO2 di atmosfer Bumi itu tertinggi sejak 650.000 tahun terakhir! IPCC juga menyimpulkan bahwa 90% gas rumah kaca yang dihasilkan manusia, seperti karbon dioksida, metana, dan nitro oksida, khususnya selama 50 tahun ini, telah secara drastis menaikkan suhu Bumi. Sebelum masa industri, aktivitas manusia tidak banyak mengeluarkan gas rumah kaca, tetapi pertambahan penduduk, pembabatan hutan, industri peternakan, dan penggunaan bahan bakar fosil menyebabkan gas rumah kaca di atmosfer bertambah banyak dan menyumbang pada pemanasan global.

Peternakan

Pada tahun 2006, Organisasi Pangan dan Pertanian Dunia (FAO) mengeluarkan laporan “Livestock’s Long Shadow” dengan kesimpulan bahwa sektor peternakan merupakan salah satu penyebab utama pemanasan global. Sumbangan sektor peternakan terhadap pemanasan global sekitar 18%,6 lebih besar dari sumbangan sektor transportasi di dunia yang menyumbang sekitar 13,1%.2 Selain itu, sektor peternakan dunia juga menyumbang 37% metana (72 kali lebih kuat daripada CO2 selama rentang waktu 20 tahun)2, dan 65% nitro oksida (296 kali lebih kuat daripada CO2).

Anda mungkin penasaran bagian mana dari sektor peternakan yang menyumbang emisi gas rumah kaca. Berikut garis besarnya menurut FAO:

1. Emisi karbon dari pembuatan pakan ternak

a. Penggunaan bahan bakar fosil dalam pembuatan pupuk menyumbang 41 juta ton CO2 setiap tahunnya

b. Penggunaan bahan bakar fosil di peternakan menyumbang 90 juta ton CO2 per tahunnya (misal diesel atau LPG)

c. Alih fungsi lahan yang digunakan untuk peternakan menyumbang 2,4 milyar ton CO2 per tahunnya, termasuk di sini lahan yang diubah untuk merumput ternak, lahan yang diubah untuk menanam kacang kedelai sebagai makanan ternak, atau pembukaan hutan untuk lahan peternakan

d. Karbon yang terlepas dari pengolahan tanah pertanian untuk pakan ternak (misal jagung, gandum, atau kacang kedelai) dapat mencapai 28 juta CO2 per tahunnya. Perlu Anda ketahui, setidaknya 80% panen kacang kedelai dan 50% panen jagung di dunia digunakan sebagai makanan ternak.7

e. Karbon yang terlepas dari padang rumput karena terkikis menjadi gurun menyumbang 100 juta ton CO2 per tahunnya

2. Emisi karbon dari sistem pencernaan hewan

a. Metana yang dilepaskan dalam proses pencernaan hewan dapat mencapai 86 juta ton per tahunnya.

b. Metana yang terlepas dari pupuk kotoran hewan dapat mencapai 18 juta ton per tahunnya.

3. Emisi karbon dari pengolahan dan pengangkutan daging hewan ternak ke konsumen

a. Emisi CO2 dari pengolahan daging dapat mencapai puluhan juta ton per tahun.

b. Emisi CO2 dari pengangkutan produk hewan ternak dapat mencapai lebih dari 0,8 juta ton per tahun.

Industri peternakan terkait erat dengan pola konsumsi daging. Baru-baru ini, badan PBB yang lain, yaitu United Nations Environment Program (UNEP) menegaskan dalam buku panduan “Kick The Habit” bahwa pola makan daging untuk setiap orang per tahunnya menyumbang 6.700 kg CO2.9 Saat ini, penduduk Bumi berjumlah sekitar 6,7 miliar orang. Bila 5 miliar orang di antaranya adalah pemakan daging, coba Anda hitung berapa triliun CO2 yang dihasilkan setiap tahunnya? Kita perlu memprogram ulang kebiasaan makan kita. Dan Anda perlu tahu, vegetarian, menurut laporan UNEP, hanya menyumbang 190 kg CO2 per tahunnya.

Pembangkit Energi

powerplant1

Sektor energi merupakan sumber penting gas rumah kaca, khususnya karena energi dihasilkan dari bahan bakar fosil, seperti minyak, gas, dan batu bara, di mana batu bara banyak digunakan untuk menghasilkan listrik.9 Sumbangan sektor energi terhadap emisi gas rumah kaca mencapai 25,9%.2

Industri

13_53_21-sunset-teesside-industry_web

Sumbangan sektor industri terhadap emisi gas rumah kaca mencapai 19,4%.2 Sebagian besar sumbangan sektor industri ini berasal dari penggunaan bahan bakar fosil untuk menghasilkan listrik atau dari produksi C02 secara langsung sebagai bagian dari pemrosesannya, misalnya saja dalam produksi semen. Hampir semua emisi gas rumah kaca dari sektor ini berasal dari industri besi, baja, kimia, pupuk, semen, kaca dan keramik, serta kertas.

Pertanian

Sumbangan sektor pertanian terhadap emisi gas rumah kaca sebesar 13,5%.2 Sumber emisi gas rumah kaca pertama-tama berasal dari pengerjaan tanah dan pembukaan hutan. Selanjutnya, berasal dari penggunaan bahan bakar fosil untuk pembuatan pupuk dan zat kimia lain. Penggunaan mesin dalam pembajakan, penyemaian, penyemprotan, dan pemanenan menyumbang banyak gas rumah kaca. Yang terakhir, emisi gas rumah kaca berasal dari pengangkutan hasil panen dari lahan pertanian ke pasar.

Alih Fungsi Lahan dan Pembabatan Hutan

deforestationSumber lain C02 berasal dari alih fungsi lahan di mana ia bertanggung jawab sebesar 17.4%.2 Pohon dan tanaman menyerap karbon selagi mereka hidup. Ketika pohon atau tanaman membusuk atau dibakar, sebagian besar karbon yang mereka simpan dilepaskan kembali ke atmosfer.9 Pembabatan hutan juga melepaskan karbon yang tersimpan di dalam tanah. Bila hutan itu tidak segera direboisasi, tanah itu kemudian akan menyerap jauh lebih sedikit CO2.

Transportasi

traffic-jam

Sumbangan seluruh sektor transportasi terhadap emisi gas rumah kaca mencapai 13,1%.3 Sektor transportasi dapat dibagi menjadi transportasi darat, laut, udara, dan kereta api. Sumbangan terbesar terhadap perubahan iklim berasal dari transportasi darat (79,5%), disusul kemudian oleh transportasi udara (13%), transportasi laut (7%), dan terakhir kereta api (0,5%).9

Hunian dan Bangunan Komersial

Sektor hunian dan bangunan bertanggung jawab sebesar 7,9%.2 Namun, bila dipandang dari penggunaan energi, maka hunian dan bangunan komersial bisa menjadi sumber emisi gas rumah kaca yang besar. Misalnya saja dalam penggunaan listrik untuk menghangatkan dan mendinginkan ruangan, pencahayaan, penggunaan alat-alat rumah tangga, maka sumbangan sektor hunian dan bangunan bisa mencapai 30%.9 Konstruksi bangunan juga mempengaruhi tingkat emisi gas rumah kaca. Sebagai contohnya, semen, menyumbang 5% emisi gas rumah kaca.9

Sampah

Limbah sampah menyumbang 3,6% emisi gas rumah kaca.2 Sampah di sini bisa berasal dari sampah yang menumpuk di Tempat Pembuangan Sampah (2%) atau dari air limbah atau jenis limbah lainnya (1,6%). Gas rumah kaca yang berperan terutama adalah metana, yang berasal dari proses pembusukan sampah tersebut.

Salju, Fenomena Alam yang Menakjubkan

Proses pembentukan salju

Untuk menjawab itu, bisa kita mulai dari proses terjadinya salju. Berawal dari uap air yang berkumpul di atmosfer Bumi, kumpulan uap air mendingin sampai pada titik kondensasi (yaitu temperatur di mana gas berubah bentuk menjadi cair atau padat), kemudian menggumpal membentuk awan. Pada saat awal pembentukan awan, massanya jauh lebih kecil daripada massa udara sehingga awan tersebut mengapung di udara – persis seperti kayu balok yang mengapung di atas permukaan air. Namun, setelah kumpulan uap terus bertambah dan bergabung ke dalam awan tersebut, massanya juga bertambah, sehingga pada suatu ketika udara tidak sanggup lagi menahannya. Awan tersebut pecah dan partikel air pun jatuh ke Bumi.

Partikel air yang jatuh itu adalah air murni (belum terkotori oleh partikel lain). Air murni tidak langsung membeku pada temperatur 0 derajat Celcius, karena pada suhu tersebut terjadi perubahan fase dari cair ke padat. Untuk membuat air murni beku dibutuhkan temperatur lebih rendah daripada 0 derajat Celcius. Ini juga terjadi saat kita menjerang air, air menguap kalau temperaturnya di atas 100 derajat Celcius karena pada 100 derajat Celcius adalah perubahan fase dari cair ke uap. Untuk mempercepat perubahan fase sebuah zat, biasanya ditambahkan zat-zat khusus, misalnya garam dipakai untuk mempercepat fase pencairan es ke air.

Biasanya temperatur udara tepat di bawah awan adalah di bawah 0 derajat Celcius (temperatur udara tergantung pada ketinggiannya di atas permukaan air laut). Tapi, temperatur yang rendah saja belum cukup untuk menciptakan salju. Saat partikel-partikel air murni tersebut bersentuhan dengan udara, maka air murni tersebut terkotori oleh partikel-partikel lain. Ada partikel-partikel tertentu yang berfungsi mempercepat fase pembekuan, sehingga air murni dengan cepat menjadi kristal-kristal es.

Partikel-partikel pengotor yang terlibat dalam proses ini disebut nukleator, selain berfungsi sebagai pemercepat fase pembekuan, juga perekat antaruap air. Sehingga partikel air (yang tidak murni lagi) bergabung bersama dengan partikel air lainnya membentuk kristal lebih besar.

Jika temperatur udara tidak sampai melelehkan kristal es tersebut, kristal-kristal es jatuh ke tanah. Dan inilah salju! Jika tidak, kristal es tersebut meleleh dan sampai ke tanah dalam bentuk hujan air.

Pada banyak kasus di dunia ini, proses turunnya hujan selalu dimulai dengan salju beberapa saat dia jatuh dari awan, tapi kemudian mencair saat melintasi udara yang panas. Kadang kala, jika temperatur sangat rendah, kristal-kristal es itu bisa membentuk bola-bola es kecil dan terjadilah hujan es. Kota Bandung termasuk yang relatif sering mengalami hujan es. Jadi, ini sebabnya kenapa salju sangat susah turun secara alami di daerah tropik yang memiliki temperatur udara relatif tinggi dibanding wilayah yang sedang mengalami musim dingin.

Struktur unik salju

Kristal salju memiliki struktur unik, tidak ada kristal salju yang memiliki bentuk yang sama di dunia ini (lihat Gambar SnowflakesWilsonBentley.jpg) – ini seperti sidik jari kita. Bayangkan, salju sudah turun semenjak bumi tercipta hingga sekarang, dan tidak satu pun salju yang memiliki bentuk struktur kristal yang sama!

Keunikan salju yang lainnya adalah warnanya yang putih. Kalau turun salju lebat, hamparan bumi menjadi putih, bersih, dan seakan-akan bercahaya. Ini disebabkan struktur kristal salju memungkinkan salju untuk memantulkan semua warna ke semua arah dalam jumlah yang sama, maka muncullah warna putih. Fenomena yang sama juga bisa kita dapati saat melihat pasir putih, bongkahan garam, bongkahan gula, kabut, awan, dan cat putih.

Selain itu, turunnya salju memberikan kehangatan. Ini bisa dipahami dari konsep temperatur efektif. Temperatur efektif adalah temperatur yang dirasakan oleh kulit kita, dipengaruhi oleh tiga besaran fisis: temperatur terukur (oleh termometer), kecepatan pergerakan udara, dan kelembapan udara. Temperatur efektif biasanya dipakai untuk menentukan “zona nyaman”. Di pantai, temperatur terukur bisa tinggi, namun karena angin kencang kita masih merasa nyaman. Pada saat salju turun lebat, kelembapan udara naik dan ini memengaruhi temperatur efektif sehingga pada satu kondisi kita merasa hangat.

TSUNAMI

Tsunami (bahasa Jepang: tsu = pelabuhan, nami = gelombang, secara harafiah berarti "ombak besar di pelabuhan") adalah perpindahan badan air yang disebabkan oleh perubahan permukaan laut secara vertikal dengan tiba-tiba. Perubahan permukaan laut tersebut bisa disebabkan oleh gempa bumi yang berpusat di bawah laut, letusan gunung berapi bawah laut, longsor bawah laut, atau atau hantaman meteor di laut. Gelombang tsunami dapat merambat ke segala arah. Tenaga yang dikandung dalam gelombang tsunami adalah tetap terhadap fungsi ketinggian dan kelajuannya. Di laut dalam, gelombang tsunami dapat merambat dengan kecepatan 500-1000 km per jam. Setara dengan kecepatan pesawat terbang. Ketinggian gelombang di laut dalam hanya sekitar 1 meter. Dengan demikian, laju gelombang tidak terasa oleh kapal yang sedang berada di tengah laut. Ketika mendekati pantai, kecepatan gelombang tsunami menurun hingga sekitar 30 km per jam, namun ketinggiannya sudah meningkat hingga mencapai puluhan meter. Hantaman gelombang Tsunami bisa masuk hingga puluhan kilometer dari bibir pantai. Kerusakan dan korban jiwa yang terjadi karena Tsunami bisa diakibatkan karena hantaman air maupun material yang terbawa oleh aliran gelombang tsunami.

Dampak negatif yang diakibatkan tsunami adalah merusak apa saja yang dilaluinya. Bangunan, tumbuh-tumbuhan, dan mengakibatkan korban jiwa manusia serta menyebabkan genangan, pencemaran air asin lahan pertanian, tanah, dan air bersih.

Sejarawan Yunani bernama Thucydides merupakan orang pertama yang mengaitkan tsunami dengan gempa bawah lain. Namun hingga abad ke-20, pengetahuan mengenai penyebab tsunami masih sangat minim. Penelitian masih terus dilakukan untuk memahami penyebab tsunami.

Teks-teks geologi, geografi, dan oseanografi di masa lalu menyebut tsunami sebagai "gelombang laut seismik".

Beberapa kondisi meteorologis, seperti badai tropis, dapat menyebabkan gelombang badai yang disebut sebagai meteor tsunami yang ketinggiannya beberapa meter diatas gelombang laut normal. Ketika badai ini mencapai daratan, bentuknya bisa menyerupai tsunami, meski sebenarnya bukan tsunami. Gelombangnya bisa menggenangi daratan. Gelombang badai ini pernah menggenangi Burma (Myanmar) pada Mei 2008.

Wilayah di sekeliling Samudra Pasifik memiliki Pacific Tsunami Warning Centre (PTWC) yang mengeluarkan peringatan jika terdapat ancaman tsunami pada wilayah ini. Wilayah di sekeliling Samudera Hindia sedang membangun Indian Ocean Tsunami Warning System (IOTWS) yang akan berpusat di Indonesia.

Bukti-bukti historis menunjukkan bahwa megatsunami mungkin saja terjadi, yang menyebabkan beberapa pulau dapat tenggelam

PROSES TERJADINYA PETIR


Petir terjadi akibat perpindahan muatan negatif menuju ke muatan positif. Menurut batasan fisika, petir adalah lompatan bunga api raksasa antara dua massa dengan medan listrik berbeda. Prinsip dasarnya kira-kira sama dengan lompatan api pada busi.

Petir adalah hasil pelepasan muatan listrik di awan. Energi dari pelepasan itu begitu besarnya sehingga menimbulkan rentetan cahaya, panas, dan bunyi yang sangat kuat yaitu geluduk, guntur, atau halilintar. Geluduk, guntur, atau halilintar ini dapat menghancurkan bangunan, membunuh manusia, dan memusnahkan pohon. Sedemikian raksasanya sampai-sampai ketika petir itu melesat, tubuh awan akan terang dibuatnya, sebagai akibat udara yang terbelah, sambarannya yang rata-rata memiliki kecepatan 150.000 km/detik itu juga akan menimbulkan bunyi yang menggelegar. Di lain kesempatan, ketika akumulasi muatan listrik dalam awan tersebut telah membesar dan stabil, lompatan listrik (eletric discharge) yang terjadi pun akan merambah massa bermedan listrik lainnya, dalam hal ini adalah Bumi. Besar medan listrik minimal yang memungkinkan terpicunya petir ini adalah sekitar 1.000.000 volt per meter.


Ciri-ciri Datangnya Petir:

Langit tiba-tiba menjadi gelap disertai angin datang begitu cepatnya dan awan yang menjulang tinggi menyerupai bunga kol berwarna keabuan-abuan, kemudian udara terasa pengap. Awan ini biasanya disebut dengan awan petir CB (Comulunimbus) Dalam musim penghujan seperti saat inilah awan-awan jenis ini banyak terbentuk. Penghubung yang "digemari", merujuk Hukum Faraday, tak lain adalah bangunan, pohon, atau tiang-tiang metal berujung lancip.


Proses Terjadinya:

Petir terjadi akibat perpindahan muatan negatif (elektron) menuju ke muatan positif (proton). Para ilmuwan menduga lompatan bunga api listriknya sendiri terjadi, ada beberapa tahapan yang biasanya dilalui. Pertama adalah pemampatan muatan listrik pada awan bersangkutan. Umumnya, akan menumpuk di bagian paling atas awan adalah listrik muatan negatif; di bagian tengah adalah listrik bermuatan positif; sementara di bagian dasar adalah muatan negatif yang berbaur dengan muatan positif. Pada bagian bawah inilah petir biasa berlontaran.


Petir dapat terjadi antara:
  1. Awan denqan awan
  2. Dalam awan itu sendiri
  3. Awan ke udara
  4. Awan dengan tanah (bumi)
Besar medan listrik minimal yang memungkinkan terpicunya petir adalah sekitar 1.000.000 volt per meter.


Dampak Negatif:

Umumnya petir-petir mengincar korban di wilayah datar yang terbuka. Besar medan listrik minimal yang memungkinkan terpicunya petir ini adalah sekitar 1.000.000 volt per meter. Bayangkan betapa mengerikannya jika lompatan bunga api ini mengenai tubuh makhluk hidup! Korban tiba-tiba terpental ketika sebuah petir menyambarnya. Seperti juga korban lainnya, ia tewas seketika dengan tubuh terbakar. Apabila petir menyambar rumah, rumah tersebut akan rusak dan perabotan elektronik akan rusak seperti telepon, televisi, atau yang lainnya.

Cara mengantisipasi petir:
  1. Apabila sebuah bangunan yang tinggi dengan memasang penangkal petir. Apabila ada petir akar menyambar alat penangkal kemudian disalurkan melalui kawat besar yang terbuat dari tembaga atau kuningan menuju ke tanah.
  2. Apabila terjadi hujan dan petir, lebih baik kita menghindar di tempat terbuka.
  3. Untuk menghindari kerusakan alat listrik di rumah apabila terjadi hujan dan petir adalah mematikan listrik, mencabut saluran antene di televisi, dan mencabut kabel telepon.

Sabtu, 17 Juli 2010

Paul Dirac : Si Jenius Dalam Sejarah Fisika


Dirac mengukuhkan teori mekanika kuantum dalam bentuk yang paling umum dan mengembangkan persamaan relativistik untuk elektron, yang sekarang dinamakan menggunakan nama beliau yaitu persamaan Dirac. Persamaan ini juga mengharuskan adanya keberadaan dari pasangan antipartikel untuk setiap partikel misalnya positron sebagai antipartikel dari elektron. Dia adalah orang pertama yang mengembangkan teori medan kuantum yang menjadi landasan bagi pengembangan seluruh teori tentang partikel subatom atau partikel elementer. Pekerjaan ini memberikan dasar bagi pemahaman kita tentang gaya-gaya alamiah. Dia mengajukan dan menyelidiki konsep kutub magnet tunggal (magnetic monopole), sebuah objek yang masih belum dapat dibuktikan keberadaannya, sebagai cara untuk memasukkan simetri yang lebih besar ke dalam persamaan medan elektromagnetik Maxwell. Paul Dirac melakukan kuantisasi medan gravitasi dan membangun teori medan kuantum umum dengan konstrain dinamis, yang memberikan landasan bagi terbentuknya Teori Gauge dan Teori Superstring, sebagai kandidat Theory Of Everything, yang berkembang sekarang. Teori-teorinya masih berpengaruh dan penting dalam perkembangan fisika hingga saat ini, dan persamaan dan konsep yang dikemukakannya menjadi bahan diskusi di kuliah-kuliah fisika teori di seluruh dunia.

Langkah awal menuju teori kuantum baru dimulai oleh Dirac pada akhir September 1925. Saat itu, R H Fowler pembimbing risetnya menerima salinan makalah dari Werner Heisenberg berisi penjelasan dan pembuktian teori kuantum lama Bohr dan Sommerfeld, yang masih mengacu pada prinsip korespondensi Bohr tetapi berubah persamaannya sehingga teori ini mencakup secara langsung kuantitas observabel. Fowler mengirimkan makalah Heisenberg kepada Dirac yang sedang berlibur di Bristol dan menyuruhnya untuk mempelajari makalah itu secara teliti. Perhatian Dirac langsung tertuju pada hubungan matematis yang aneh, pada saat itu, yang dikemukakan oleh Heisenberg. Beberapa pekan kemudian setelah kembali ke Cambridge, Dirac tersadar bahwa bentuk matematika tersebut mempunyai bentuk yang sama dengan kurung poisson (Poisson bracket) yang terdapat dalam fisika klasik dalam pembahasan tentang dinamika klasik dari gerak partikel. Didasarkan pada pemikiran ini dengan cepat dia merumuskan ulang teori kuantum yang didasarkan pada variabel dinamis non-komut (non-comuting dinamical variables). Cara ini membawanya kepada formulasi mekanika kuantum yang lebih umum dibandingkan dengan yang telah dirumuskan oleh fisikawan yang lain.

Pekerjaan ini merupakan pencapaian terbaik yang dilakukan oleh Dirac yang menempatkannya lebih tinggi dari fisikawan lain yang pada saat itu sama-sama mengembangkan teori kuantum. Sebagai fisikawan muda yang baru berusia 25 tahun, dia cepat diterima oleh komunitas fisikawan teoretis pada masa itu. Dia diundang untuk berbicara di konferensi-konferensi yang diselenggarakan oleh komunitas fisika teori, termasuk kongres Solvay pada tahun 1927 dan tergabung sebagai anggota dengan hak-hak yang sama dengan anggota yang lain yang terdiri dari para pakar fisika ternama dari seluruh dunia.

Formulasi umum tentang teori kuantum yang dikembangkan oleh Dirac memungkinkannya untuk melangkah lebih jauh. Dengan formulasi ini, dia mampu mengembangkan teori transformasi yang dapat menghubungkan berbagai formulasi-formulasi yang berbeda dari teori kuantum. Teori tranformasi menunjukkan bahwa semua formulasi tersebut pada dasarnya memiliki konsekuensi fisis yang sama, baik dalam persamaan mekanika gelombang Schrodinger maupun mekanika matriksnya Heisenberg. Ini merupakan pencapaian yang gemilang yang membawa pada pemahaman dan kegunaan yang lebih luas dari mekanika kuantum. Teori transformasi ini merupakan puncak dari pengembangan mekanika kuantum oleh Dirac karena teori ini menyatukan berbagai versi dari mekanika kuantum, yang juga memberikan jalan bagi pengembangan mekanika kuantum selanjutnya. Di kemudian hari rumusan teori transformasi ini menjadi miliknya sebagaimana tidak ada versi mekanika kuantum yang tidak menyertainya. Bersama dengan teori transformasi, mekanika kuantum versi Dirac disajikan dalam bentuk yang sederhana dan indah, dengan struktur yang menunjukkan kepraktisan dan konsep yang elegan, namun berkaitan erat dengan teori klasik. konsep ini menunjukkan kepada kita aspek baru dari alam semesta yang belum pernah terbayangkan sebelumnya.

Karier cemerlang Dirac sesungguhnya telah tampak ketika dia masih berada di tingkat sarjana. Pada saat itu Dirac telah menyadari pentingnya teori relativitas khusus dalam fisika, suatu teori yang menjadikan Einstein terkenal pada tahun 1905, yang dipelajari Dirac dari kuliah yang dibawakan oleh C D Broad, seorang profesor filsafat di Universitas Bristol. Sebagian besar makalah yang dibuat Dirac sebagai mahasiswa paska sarjana ditujukan untuk menyajikan bentuk baru dari rumusan yang sudah ada dalam literatur menjadi rumusan yang sesuai (kompatibel) dengan relativitas khusus. Pada tahun 1927 Dirac berhasil mengembangkan teori elektron yang memenuhi kondisi yang disyaratkan oleh teori relativitas khusus dan mempublikasikan persamaan relativistik yang invarian untuk elektron pada awal tahun 1928.

Persamaan Dirac

Persamaan Dirac

Sebagian fisikawan lain sebenarnya memiliki pemikiran yang sama dengan apa yang dilakukan oleh Dirac, meskipun demikian belum ada yang mampu menemukan persamaan yang memenuhi seperti apa yang telah dicapai oleh Dirac. Dia memiliki argumen yang sederhana dan elegan yang didasarkan pada tujuan bahwa teori tranformasinya dapat berlaku juga dalam mekanika kuantum relativistik – sebuah argumen yang menspesifikasikan bentuk umum dari yang harus dimiliki oleh persamaan relativistik ini, sebuah argumen yang menjadi bagian yang belum terpecahkan bagi semua fisikawan. Teori tranformasinya harus memuat persamaan yang tidak hanya berupa turunan waktu, sementara asumsi relativitas mensyaratkan bahwa persamaannya harus juga dapat linier di dalam turunan ruang. Persamaan Dirac merupakan salah satu persamaan fisika yang paling indah. Profesor Sir Nevill Mott, mantan Direktur Laboratorium Cavendish, baru-baru ini menulis,”persamaan ini bagi saya adalah bagian fisika teori yang paling indah dan menantang yang pernah saya lihat sepanjang hidup saya, yang hanya bisa dibandingkan dengan kesimpulan Maxwell bahwa arus perpindahan dan juga medan elektromagnetik harus ada. Selain itu, persamaan Dirac untuk elektron membawa implikasi penting bahwa elektron harus mempunyai spin ½, dan momen magnetik eh/4pm menjadi benar dengan ketelitian mencapai 0,1%.

dirac_21

Persamaan Dirac dan teori elektronnya masih tetap relevan digunakan sampai sekarang. Perkiraan yang dibuatnya telah dibuktikan dalam sistem atom dan molekul. Telah ditunjukkan juga bahwa hal ini berlaku untuk partikel lain yang memiliki spin yang sama dengan elektron seperti proton, hyperon dan partikel keluarga baryon lainnya. konsep ini dapat diterapkan secara universal dan diketahui dengan baik oleh para fisikawan dan kimiawan, sesuatu yang tidak seorangpun dapat membantahnya. Melihat kenyataan ini, Dirac merasa sudah waktunya untuk menyatakan, ”teori umum mekanika kuantum sudah lengkap sekarang …… hukum-hukum fisika yang yang mendasari diperlukannya teori matematika dari bagian besar fisika dan keseluruhan bagian dari kimia telah diketahui secara lengkap.”

Indahnya Fisika

Dirac menunjukkan kemudian bahwa persamaannya ini mengandung implikasi yang tidak diharapkan bagi suatu partikel. Persamaannya memperkirakan adanya antipartikel, seperti positron dan antiproton yang bermuatan negatif, yaitu suatu objek yang saat ini sudah sangat dikenal di laboratorium fisika energi tinggi. Menurut teorinya, semua partikel memiliki antipartikel tertentu yang terkait dengannya. sebagian besar dari antipartikel ini sekarang telah dibuktikan keberadaannya. Positron dan antiproton adalah sebagian kecil dari antipartikel yang sudah sangat dikenal, keduanya dapat berada dalam kondisi stabil di ruang hampa, dan saat ini digunakan secara luas dalam akselerator penumbuk partikel (collider accelerator) yang dengannya fisikawan mempelajari fenomena yang terjadi dalam fisika energi tinggi.

Dirac dan Persamaan Relativistiknya

Dirac dan Persamaan Relativistiknya

Penting diungkapkan di sini keindahan dari persamaan Dirac. Keindahan ini bisa jadi sulit dirasakan oleh orang yang tidak terbiasa dengan rumus-rumus fisika, tetapi kenyataan ini tidak akan dibantah oleh para fisikawan. Persamaan Dirac adalah salah satu penemuan besar dalam sejarah fisika. Melalui pekerjaannya ini, Dirac memberikan prinsip-prinsip dasar yang memuaskan dalam usaha untuk memahami alam semesta kita. Melalui penemuannya ini nama Dirac akan dikenang selamanya sebagai salah satu fisikawan besar. Suatu monumen telah dibangun untuknya atas jasanya membimbing kita kepada pemahaman tentang salah satu aspek penting gaya dasar yang terkandung di alam semesta yang kita diami ini.

Persamaan Dirac dalam bentuk lain

Persamaan Dirac dalam bentuk lain

Nama Dirac akan dimasukkan dalam catatan sejarah fisika atas kontribusi yang diberikannya kepada dunia sains khususnya fisika berupa dasar-dasar mekanika kuantum dan teori transformasi. Penemuannya menempatkan Dirac di jajaran papan atas fisikawan teori sepanjang masa – seorang jenius yang hebat dalam sejarah fisika.